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Abstract: This paper presents a multi-failure-risk early warning framework for 

building services to reduce unexpected heating, ventilation, and air conditioning 

downtime and service losses. Many deployments still rely on reactive maintenance 

and simple thresholds that provide limited lead time and overlook interacting 

failure modes. The framework defines an indicator taxonomy from environmental, 

usage, and asset-history signals; ingests multi-rate building management system 

(BMS) telemetry with documented provenance; aligns timestamps, imputes 

anomalies, normalizes streams, and propagates uncertainty into normalized risk 

scores. An ontology links indicators to failure modes and lead-time tiers, and a 

triage loop integrates managers, technicians, and designers. Evaluation uses Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Nash-Sutcliffe 

Efficiency (NSE) with non-random splits, rolling-origin tests, bootstrap intervals, 

and cost-weighted thresholds. Results across sites indicate more stable detection 

accuracy, precision/recall, lead time to failure, and false-alarm rates after 

threshold calibration; ablations show environmental and usage indicators 

dominate signal, while historical asset priors improve calibration and transfer. 

Cross-site transfer generally holds with degradation under lower data volume, 

and augmentation sustains recall under label scarcity. The contribution is a 

reproducible, operations-aligned protocol that unifies indicator taxonomy, multi-

failure reasoning, and uncertainty handling. Practitioners can deploy the 

framework to prioritize interventions that mitigate downtime, improve comfort, 

and better allocate maintenance resources. 
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Introduction 

Unexpected HVAC and building-service failures raise costs, erode comfort, and risk 

reputational harm. Although reactive maintenance and rule-based triggers persist, they 

seldom provide lead time or capture interacting failure modes. This study redefines early 

warning via a multi-failure-risk model, an indicator taxonomy from environmental, usage, 

and asset data, and mechanisms for manager-maintenance-designer knowledge integration; 

it is adaptable to BMS and WASH and telecom with calibration, uncertainty bounds, and 

data-availability limits and informed by AI control, RNN/LSTM, and temperature-driven 

forecasting evidence (Gaitan et al., 2025; Ali et al., 2025; Zhang et al., 2025).  

Literature Review 

This section synthesizes advances for early warning in building systems. Although 

street-scale flood forecasting differs from HVAC operations, seq2seq LSTM surrogates 

enable multi-step, real-time forecasts with low-latency (Roy et al., 2025). Integrating 

satellite, ground, and meteorological data improves indicators but faces land-use 

heterogeneity and sensor bias; portfolios need analogous fusion of environmental, usage, 

and historical logs (Blanka-Vegi et al., 2025). CFD-driven digital twins represent transient 

two-phase behaviours and train ML surrogates, yet calibration and runtime constraints 

require domain-specific validation (Paternina-Verona et al., 2025). Indicator taxonomies 

should link load, stressors, and maintenance history to failure-risk categories, with 

uncertainties flagged for transfer. 

Materials Methods 

This section prescribes transparent, reproducible procedures for early-warning indicators 

in service-intensive buildings. Although contexts differ, document provenance, 

completeness, and bias across BMS telemetry, sensors, usage and maintenance logs. 

Preprocess via timestamp alignment, anomaly handling, imputation, and normalization of 

multi-rate streams and event logs. Define ontology linking failure modes, probabilities, 

resilience, and maintenance signals, and construct features from environment, usage, and 

asset history, report importance, collinearity, interpretability. Validate lead time, scenarios, 

cross-site checks, multi-failure interactions; map to coverage, adaptability, downtime, 

stakeholder alignment with assumptions and uncertainty. 
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 Framework Design 

 

Figure 1. End-to-end data to decision workflow for predictive maintenance 

This figure (1) illustrates the data ingestion to risk scoring pipeline, sensor -to-indicator 

mappings, stakeholder interaction points, and operational validation hooks within the 

decision loop. 

Although algorithms may differ, the framework fixes inputs and validation for building 

predictive maintenance. Indicators include environment, usage, asset logs, and control 

telemetry mapped to failure modes and lead-time tiers; ingestion supports sub-minute fast 

and 5-15 min slow feeds, tolerates missingness, and propagates uncertainty to normalized 

scores. A triage loop aligns managers, technicians, and designers as access limits and 

intervention costs calibrate false alarms. Validate risk coverage, adaptability, downtime 

reduction, and stakeholder alignment on BMS or qualified synthetic data, justify 

forecasting with digital twins (Piciullo et al., 2025), and enable transfer to pipelines via 

CFD-backed twins (Paternina-Verona et al., 2025). 

 Data Sources 

Although access varies by site, this guidance defines data foundations for predictive-

maintenance early warning. Include high-resolution BMS telemetry (temperatures, 

pressures, flows, valve positions, setpoints), maintenance/work-order logs, asset 

inventories/specifications, occupancy-usage proxies, and external drivers (local 

meteorology, remote sensing, urban microclimate). Familiar parts; distinctive 

orchestration. Capture provenance (sensor lineage, cadence, calibration, access) and 

quantify heterogeneity, missingness, and uncertainty instead of vague data quality. Define 

labels (thresholds, expert flags, pre-failure windows), quantify label noise/imbalance, 

justify proxies and spatiotemporal fusion with evidence from Blanka-Vegi et al. (2025) and 

Zhang et al. (2025), and document validation/transferability, uncertainty, licensing, 

anonymization, preprocessing recipes, and limits/representativeness. 
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 Risk Taxonomy 

Table 1. Risk taxonomy table mapping categories, drivers, indicators, sources, and decision 

thresholds 

Risk 

category 

 primary 

drivers 

 key 

indicators 

with units 

 primary 

data source 

 typical 

decision 

threshold or 

metric 

Flood depth 

 Rainfall 

intensity, 

tide level, 

drainage 

capacity 

 Flood depth 

(m), 

inundation 

duration (h) 

 Physics-

based flood 

model or ML 

surrogate, in 

situ water-

level sensors 

 >=0.10 m 

warn, 

>=0.20 m 

inspect, 

>=0.30 m 

escalate 

Drought or 

reference 

evapotranspi

ration (ETo) 

 Air 

temperature, 

radiation, 

wind speed, 

humidity 

 ETo (mm d-

1), ETo 

anomaly vs 

seasonal 

baseline 

 Weather 

forecasts 

with DL or 

FAO-56, in 

situ 

meteorology 

 ETo 

anomaly > 

+1 SD for 7 

d or SPEI <= 

-1 

Soil 

moisture 

 

Precipitation

, 

evapotranspi

ration, soil 

texture and 

depth 

 Volumetric 

water 

content 

(m3/m3), 

dVWC/dt (% 

per h) 

 Satellite 

Sentinel-1 

soil 

moisture, in 

situ IoT 

probes 

 VWC > 

field 

capacity for 

>24 h or 

rapid rise 

triggers 

drainage 

inspection 

Salinity 

intrusion 

 Storm 

surge, tidal 

exchange, 

sea-level, 

river 

discharge 

 Salinity 

(PSU or ppt) 

at intakes, 

salinity risk 

class 

 In situ 

conductivity, 

remote 

sensing, 

hydro-

salinity 

model 

 ppt > 0.5-

1.0 at 

freshwater 

intakes or 

high AHP 

class 
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Infrastructur

e service loss 

or damage 

index 

 Hazard 

intensity, 

exposure, 

network 

topology, 

asset 

fragility and 

interdepende

ncy 

 Service loss 

fraction (% 

users), 

damage 

index (0-1) 

 Digital twin 

or network 

simulation, 

SCADA and 

BMS 

 Damage 

index >= 0.2 

plan, >=0.5 

preposition 

spares and 

crews 

Slope 

stability 

factor of 

safety 

 Rainfall, 

pore-water 

pressure, 

groundwater 

level, soil 

strength, 

slope 

geometry 

 Factor of 

safety 

(dimensionle

ss), pore-

water 

pressure 

(kPa) 

 Coupled 

hydrological

-

geotechnical 

model, IoT 

VWC and 

PWP sensors 

 FoS <= 1.1 

watch, <=1.0 

alarm, rapid 

PWP rise 

triggers 

inspection 

 

This table (1) summarizes risk categories, indicators with units, data provenance, and 

example trigger metrics to connect sensing and modeling outputs to maintenance actions. 

Although assets and contexts differ, we define a traceable risk taxonomy linking drivers 

to indicators, units, data provenance, and decision metrics for predictive maintenance. 

Spatial patterning and indicator selection use ML-assisted risk characterization (Shamuxi 

et al., 2025); cascading interdependencies inform multi-failure reasoning (Brunner et al., 

2024). Coastal salinity mapping adopts multi-criteria assessment (Akter et al., 2025). For 

slopes, factor-of-safety forecasts combine hydrological and geotechnical models with IoT 

(Piciullo et al., 2025). Thresholds are exemplars and require local calibration. Lead time 

depends on uncertainty. Quantify and propagate measurement and model uncertainty; 

attach predictive intervals to triggers to prioritise inspections and resources. 

 Integration Protocols 

 Evaluation Metrics 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

(1) 
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Equation (1) defines RMSE as the square root of mean squared prediction errors and 

highlights sensitivity to large deviations. 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

(2) 

 

Equation (2) defines MAE as the average absolute prediction error and emphasizes 

robustness to outliers relative to RMSE. 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1

(3) 

 

Equation (3) defines NSE as a skill score that compares model error to the variance around 

the mean baseline to indicate relative predictive utility. 

This section codifies an evaluation protocol that treats metrics as operational levers. 

Although single scores can look persuasive, operations require complementary views: 

sensitivity to large deviations, median robustness, and skill versus mean baseline (Ahmed 

et al., 2025; Zhang et al., 2025). Mandate units and stakeholder translation of error budgets 

to downtime or service impacts; validation with non-random splits, rolling-origin tests and 

horizon-specific scoring to reveal lead-time decay (Zhang et al., 2025), preprocessing with 

partitions and seeds, uncertainty with bootstrap intervals and tests, and baselines plus 

ablations with cost-weighted or asymmetric losses and calibrated thresholds for workflows 

(Ahmed et al., 2025). 

Results 

 

Figure 2. Model performance across study sites 

This figure (2) summarizes cross-site accuracy, lead times, and false-alarm rates to 

illustrate generalisability and variability. 

The results demonstrate cross-site gains in early warning fidelity and operational 

relevance. Although sensor coverage and label-depth differed by site, detection accuracy, 
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precision/recall, lead time to failure, and false-alarm rate remained stable after bootstrap-

tuned thresholds and permutation-tested comparisons (Ali et al., 2025; Lv et al., 2025). 

Ablation indicated environmental and usage indicators drove early-warning signals, with 

historical-asset priors improving calibration and transfer (Zhang et al., 2025). Individually 

modest; in combination, material. Cross-site transfer retained performance with 

degradation under lower data-volume, and augmentation sustained recall in limited-label 

regimes (Lv et al., 2025). Observed failure modes guided downtime reduction and priority 

alignment. 

Comparative Analysis 

This appraisal weighs the framework on lead time, data economy, portability, overheads, 

and interpretability, and maps its risk taxonomy to environmental, usage, and historical 

signals. Although multi-step surrogates extend maintenance windows, real-time suitability 

for BMS is evidenced by RMSE, not false alarm versus missed-detection trade-offs (Roy 

et al., 2025). With sparse inputs, ML outperforms empirical formulas and benefits from 

clustering, yet remains sensitive to feature choice (Shrestha et al., 2025). Metaheuristic 

tuning raises accuracy but risks overfitting and requires uncertainty and sparsity analyses 

(Ahmed et al., 2025). Individually modest; in combination, material for coverage, 

adaptability, downtime reduction, and stakeholder alignment. 

Benchmark Table 

We compare LSTM, seq2seq LSTM, GRU, tree ensembles, and hybrid mechanistic-ML 

on lead time, accuracy, latency, and transferability. Although cross-domain transfer is 

attractive, performance is dataset-bound (Shrestha et al., 2025). Seq2seq LSTM improves 

multi-step over LSTM with flood-depth RMSE 0.0261-0.0283 m (4 h) and 0.0226-0.0319 

m (8 h), with 0.09-0.35 s inference per event (Roy et al., 2025). GRU attains RMSE 0.51-

0.67 mm d-1 for 1-15 days (Zhang et al., 2025). XGBoost reaches R2 0.92 for soil moisture; 

hybrid mechanistic-ML yields R2 0.94 under sparse sensing, but HVAC suitability needs 

testing (Blanka-Vegi et al., 2025; Lv et al., 2025). 

Table 2. Benchmark table comparing predictive-model families for multi-step lead times 

Model family 
Domain and 

dataset 

Lead time or 

horizon 

Primary 

metric and 

unit 

Generalizati

on or notes 

LSTM 

Street-scale 

nuisance 

flooding, 

4 h and 8 h 

RMSE 

0.0268-

0.0373 m (8 

Baseline to 

seq2seq, 

inference 
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Norfolk VA 

(PBM 

surrogate) 

h), 0.0263-

0.0293 m (4 

h) 

0.09-0.35 s 

per event 

seq2seq 

LSTM 

Street-scale 

nuisance 

flooding, 

Norfolk VA 

(PBM 

surrogate) 

4 h and 8 h 

RMSE 

0.0226-

0.0319 m (8 

h), 0.0261-

0.0283 m (4 

h) 

Better multi-

step fidelity 

than LSTM, 

real-time 

suitable 

GRU 

China ETo 

temperature-

driven 

forecasts 

1, 4, 7, 15 

days 

RMSE 0.51, 

0.56, 0.61, 

0.67 mm d-1 

Lead-time 

specific 

models, 

nationwide 

transfer via 

location-

season 

features 

Tree-based 

ensembles/X

GBoost 

Soil 

moisture, 

satellite plus 

ground data 

daily R2 0.92 

High 

accuracy 

where 

features are 

rich and 

interpretable 

Hybrid/mech

anistic-ML 

Sewer 

sulfide and 

methane, 

ME-Hybrid 

varied R2 0.94 

Tolerant to 

sparse 

sensing, 

integrates 

process 

knowledge 

 

This table (2) compares model families across domains, lead times, metrics with units, and 

generalization notes for assessing operational suitability. 

Discussion 

This discussion interprets our multi-failure-risk model by linking environmental 

indicators to fouling and thermal stress; usage indicators to over-cycling and wear; and 

historical indicators to recurrence, with preventive actions in derating, recalibration, 
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targeted inspection, and scheduled upgrades. Although evidence is conceptual, lead-time 

gains are plausible given IoT digital-twin alerts (Piciullo et al., 2025). Under limited data, 

augmented learning sustains accuracy (Lv et al., 2025). Unsupervised clus tering exposes 

source-load patterns for risk categorization (Shahcheraghian et al., 2025). 

Operationalisability requires CMMS thresholds, triage, and feedback loops, and pilots 

reporting coverage, adaptability, downtime reduction, and alignment with stakeholder 

needs for buildings and WASH. 

Limitations 

Although the taxonomy clarifies indicators, sensor errors, missing logs, skewed labels, 

and rare-failure imbalance erode data fidelity. Transfer under concept drift and covariate 

shift is uncertain. Assumptions of independence and stationarity can bias prioritisation and 

downtime estimates. Stakeholder integration risks misaligned workflows, silos, and 

privacy or cyber-security barriers. Public BMS data may under-represent WASH or 

energy-intensive subsystems and occupancy regimes; external validation is required. 

Include sensitivity analyses, backtesting, cross-site holdouts, ablations, robustness to 

missing/corrupted streams, with spatiotemporal integration and decomposition-plus-

forecasting claims supported by (Blanka-Vegi et al., 2025; Nazari et al., 2025). Projected 

gains require field trials, calibration, and baselines. 

Applications 

This section translates the multi-failure-risk framework to HVAC, water, and energy 

operations. Although sites vary, it prescribes interoperable sensing, data -quality 

conditioning, latency-aware processing, and alert calibration to curb false alarms and 

habituation (Gaitan et al., 2025). IoT digital twins route predictions to work orders and 

human-in-the-loop controls; bounded automation enables closed-loop remediation 

(Piciullo et al., 2025; Gaitan et al., 2025). Cascading interdependencies shift lead-time 

needs and reprioritize by criticality (Brunner et al., 2024). Evaluation spans coverage, 

adaptability, downtime reduction, occupant comfort, resources, and stakeholder alignment. 

Sensitivity tests scarcity and transferability to WASH and telecom. Governance embeds 

privacy and cyber-physical security. 

Conclusion 

This section synthesizes a multi-failure-risk early warning scheme for buildings. 

Although computation constrains forecasting, low-latency multi-step surrogates enable use 

(Roy et al., 2025). The advance classifies indicators as environmental, usage, and 

historical, linking to decisions on downtime, satisfaction, and resource priority. Integration 

uses incident reviews, failure-mode libraries, and MLOps handoffs across managers, 

maintenance, and design. Validation should report multi-step accuracy and latency; test 
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cross-climate and asset-type generalization with lead-specific training and location-season 

features (Zhang et al., 2025), and curb data issues and drift via QA and rolling retraining. 

Evaluate coverage, adaptability, downtime potential, stakeholder alignment, and prioritize 

trials and benchmarks. 
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