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Abstract: This paper presents a modular, risk-weighted prioritization 

framework for inspection of rural water, sanitation, and hygiene (WASH) 

assets where personnel, transport, and diagnostic capacity are constrained 

and delays elevate health risk. The practical gap is translating multi-criteria 

evidence and systems insights into capacity-aware, field-ready inspection 

schedules with uncertainty accounted for. The methodology fuses quality-

controlled asset registers, maintenance logs, wastewater signals, remote-

sensing proxies, and community alerts; constructs composite priorities from 

need typologies, severity-weighted risk, time since last inspection, and 

access limits; and applies Bayesian calibration to quantify and propagate 

uncertainty. Evaluation uses Root Mean Squared Error (RMSE), bias, 

calibration, and bootstrap confidence intervals, with risk tiers linked to 

human health risk assessment (HHRA), entropy-weighted water quality 

index (EWQI), and nitrate pollution index (NPI). Simulations indicate higher 

flexibility, resource savings, coverage, and faster mean response time than 

distance-based or random baselines; priority scores concentrate on high-

severity typologies, and confidence intervals widen under low participation, 

high noise, and long reporting latency. The contribution is a parsimonious, 

uncertainty-aware scheduling framework that integrates severity, 

vulnerability, and near-real-time community input with fallback heuristics 

and human-in-the-loop triage. The approach enables agencies to convert 

heterogeneous evidence into feasible, equity-aware inspection schedules 

that improve responsiveness and resource use under scarce capacity. 
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Introduction 

 

Figure 1. Study scope and themes overview 

This figure (1) depicts the thematic pillars and data streams mapping to priority scoring 

and inspection decisions. 

This study tackles inspection prioritization for rural WASH assets under personnel, 

transport, and diagnostic constraints, with delays amplifying risk. Although resources are 

scarce, prioritization should integrate severity, failure probabilities, community feedback. 

Each criterion must be justified by coverage and responsiveness. State assumptions on data 

availability, reporting latency, and heterogeneity; propose rules linking public datasets and 

simulations to scores. The gap is translating operations research and systems thinking into 

schedules. Implementation and policy specify indicators, data collection, and risk 

communication. Claims about environmental drivers and simulations must reference 

watershed-climate modeling (Lee et al., 2025) and disentangling frameworks (Palmate et 

al., 2025). 

Context 

This framework treats environmental drivers, water-quality indicators, and community 

signals as equal inputs to prioritization. Although hydrological connectivity and 
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seasonality vary across catchments, they can reshape contaminant pathways and temporal 

risk at water points (Peng et al., 2025). Measured contaminants map to urgency via 

groundwater metrics and health-risk models; methods and exposure assumptions require 

justification against assessment evidence (Wei et al., 2025). Severity bands combine with 

need typologies (dependence, functionality, access) to yield field-ready labels. Near-real-

time community reports trigger rescheduling with validation. Inputs span monitoring, 

remote-sensing proxies, community reports, and failure records, performance tracked by 

savings, coverage, responsiveness, and feasibility. 

Literature Review 

This section synthesizes methodological precedents for spatially distributed inspection 

prioritization in WASH. Although multi-criteria geospatial ranking is established in water-

resource mapping, field-ready translation requires parsimonious heuristics (Tasci et al., 

2025). Seasonal and transport-aware risk models clarify where hazards propagate, yet 

coupling those dynamics with vulnerability indices remains uncommon (Peng et al., 2025). 

Bayesian calibration with emulators enables uncertainty propagation and recalibration 

under data constraints (Kaurila et al., 2025). Need and severity typologies should anchor 

metrics; coverage, responsiveness to risk, resource savings, and feasibility, while 

community feedback requires assessment for timeliness and bias, necessitating incremental 

rollout and validation against field outcomes. 

Priority Models 

This synthesis compares five model families for WASH inspection prioritization. 

Although their mechanics differ, they serve two aims: forecast risk and translate evidence 

into ranked actions. CA-Markov, SWAT, and Invest flag hotspots via land-use or 

hydrologic response; useful pre-emptively but needing local validation and scale checks 

(Abdelkarim, 2025). Bayesian networks integrate evidence, yield risk scores or failure 

probabilities, and quantify uncertainty (Jermilova et al., 2025). EWQI/NPI provide 

interpretable thresholds linked to public-health burden (Wei et al., 2025). Adoption turns 

on data gaps (asset registries, sampling), compute, and interpretability, with iterative 

updates from community reports and sensors. 

Materials Methods 

This section defines a reproducible pipeline for priority-setting. Although field data are 

sparse, we apply QC to reconcile asset registers, maintenance logs, community reports, and 

remote proxies; feature selection balances predictiveness and interpretability. Composite 

priorities join needs, severity-weighted risk, time since last inspection, and access limits. 

Public or synthetic datasets simulate workloads, with sensitivity to quality and gaps. 

Evaluation tracks coverage, responsiveness, and feasibility via cross-validation. Real-time 
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community feedback enables reprioritization under resource limits, with governance and 

ethical safeguards. Claims on hydrological feature selection and groundwater risk 

heuristics require support from Usman et al. (2025) and Wei et al. (2025). 

Data Sources 

Data sources for WASH inspection prioritization include registries, logs, community 

alerts (SMS/apps), wastewater surveillance, and remote-sensing. Although heterogeneity 

complicates integration, a rubric on time, space, completeness, reporting/sampling bias, 

and latency structures appraisal. Wastewater signals anticipate pathogen trajectories (Matra 

et al., 2025). Non-traditional providers yield broad, noisy coverage (Falconer et al., 2025). 

Conventional parts; distinctive orchestration. Hydro chemical and groundwater risks 

inform severity-weighted indices requiring methods, geotags, detection limits, QA/QC 

(Salem et al., 2025). Ethics, consent, privacy for community and wastewater data, 

governance, triangulation, field verification, temporal cross-checks, and gains via 

replicable indicators must be documented, with transferability bounded by cited contexts. 

Model Design 

This section defines a modular prioritization engine for WASH inspections. Although 

field teams face sparse data, the design balances expressiveness with simplicity. 

Typologies of need, severity bands, and weighted community input drive scoring rules; 

heterogeneous signals yield ranked tasks. Missing/noisy/biased reports are handled via 

robust filters and debiasing. Uncertainty is quantified and propagated using Bayesian 

calibration (Kaurila et al., 2025). Evidential bio-inspired feature selection reduces inputs 

and clarifies drivers (Usman et al., 2025). Outputs align with flexibility, resource savings, 

coverage, risk-responsiveness, and feasibility via simulations, sensitivity tests, and field 

checks. Complexity is capped with fallback heuristics and human-in-the-loop triage 

offline. 

 

This figure (2) shows data ingestion paths, component interactions, calibration and 

uncertainty modules, and the flow from inputs to prioritization outputs. 

Evaluation Metrics 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

(1) 

 

Equation (1) defines RMSE as the root mean square error for continuous-target forecasts 

used to operationalize accuracy thresholds in prioritization. 
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Figure 2. Modeling workflow and data flows 

 

This section specifies an evaluation regime linking predictive accuracy, health relevance, 

and operational outcomes. Although RMSE is sensitive to outliers, it square-penalizes large 

deviations and suits continuous water-quality and failure targets; we adopt it and report 

bias, calibration, and bootstrap confidence intervals to propagate uncertainty into risk-

weighted tiers (Usman et al., 2025). Simulation-based inspection workflows convert scores 

and error bounds into capacity-constrained priority schedules and quantify coverage 

improvement, mean response time, resource savings, and exposure reductions (Wang et 

al., 2025). Error thresholds affecting acceptable health-risk changes require empirical 

HHRA backing (Wei et al., 2025). Protocols detail splits, cross-validation, and baselines. 

Results 

The results show inputs become actionable priorities vs baselines. Although field data 

are partial, simulations indicate higher flexibility, resource savings, coverage, risk 

responsiveness, and feasibility than distance-based or random plans. Priority scores shift 

toward high-severity typologies, coverage maps expand, and time-to-response declines; 95 

percent bootstrap intervals widen with low participation, high noise, and long feedback 

latency. Severity weighting dominates, with smaller effects from feedback reliability and 

update frequency, and scenarios trace coverage versus travel-cost trade-offs. Risk 

thresholds follow groundwater HRA, EWQI, NPI, and nitrate metrics (Salem et al., 2025; 

Wei et al., 2025). Generalizability requires local calibration. 
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Comparative Analysis 

𝐶𝑅 = (
𝐶 × 𝐼𝑅 × 𝐸𝐹 × 𝐸𝐷

𝐵𝑊 × 𝐴𝑇
) × 𝐶𝑆𝐹 (2) 

 

Equation (2) quantifies lifetime excess cancer risk from contaminant exposure using 

chronic daily intake and a slope factor. 

This review weighs priority-setting frameworks by empirical grounding and translation 

of measurements into actionable inspection queues. Although heuristics expedite routing, 

risk-weighted scheduling better targets hazards when severity indices, including cancer 

risk estimators, guide ranks (Wei et al., 2025). Geospatial-statistical hotspot tools can raise 

sensitivity yet risk false positives without validated thresholds and sufficient sampling 

(Barathkumar et al., 2025). Data mixes modulate specificity; the effect intensifies under 

heterogeneous hydrogeology. Across flexibility, savings, coverage, responsiveness, and 

feasibility, risk-weighted schemes improve outcome orientation (Wei et al., 2025). 

Managers need confidence bounds and probabilistic ranks to stabilize ranks and balance 

workload (Barathkumar et al., 2025). 

Metrics Table 

Table 1. Unified metrics comparison table for WASH inspection evaluation. 

Metric 
Brief 

definition 
Unit or scale 

Dataset or 

site 

Interpretatio

n note 

RMSE 

Average 

magnitude of 

model 

prediction 

error 

Outcome 

units 

Report site 

ID and n 

Lower is 

better, scale 

dependent, 

outlier 

sensitive 

R2 

Proportion 

of variance 

explained by 

model 

0 to 1 
Report site 

ID and n 

Higher is 

better, 

unstable 

with limited 

variance 

EWQI 

Composite 

water quality 

index using 

entropy 

weights 

Dimensionle

ss (method 

defined) 

Report site 

ID and n 

Lower 

indicates 

better 

quality, 

disclose 
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indicator set 

and weights 

NPI 

Nitrate 

Pollution 

Index for 

groundwater 

Dimensionle

ss 

Report site 

ID and n 

Higher 

indicates 

greater 

nitrate load, 

method 

cutoffs vary 

HI 

Non-

carcinogenic 

Hazard 

Index from 

HHRA 

Dimensionle

ss 

Report site 

ID and n 

HI < 1 

typically 

acceptable, 

exposure 

assumptions 

matter 

CR 

Cancer risk 

probability 

from HHRA 

Probability 
Report site 

ID and n 

Typical 

decision 

band 1e-6 to 

1e-4, context 

specific 

 

This table (1) summarizes evaluation metrics, standardized units or scales, provenance 

fields, and concise interpretation notes for cross-site comparison. 

This section defines a unified metrics table for comparing model performance and water 

quality risk across sites. Although sampling, sensor precision, and preprocessing differ, 

units and annotations must be standardized—otherwise summaries mislead. RMSE 

measures error magnitude and R2 variance explained as diagnostics, but both are scale 

dependent and sensitive to outliers (Usman et al., 2025). EWQI and NPI summarize water 

quality, while HI and CR implement HHRA bands (HI < 1; CR 1e-6 to 1e-4) (Wei et al., 

2025). Hotspot claims and comparisons require geospatial/statistical evidence, provenance, 

and sample sizes (Barathkumar et al., 2025). Managers predefine triggers and avoid 

extrapolation. 

Discussion 

Although severity-first queues can shorten response times, they may defer preventative 

work; the scheme counters this by pairing typologies of need with adaptive risk bands. 

Hydrogeochemical hotspot mapping supports targeted scheduling aligned with SDG aims, 

but effects are context-bound (Dange et al., 2025). Spatial scale and buffers reshape radii 
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and routing (Lee et al., 2025). Integrating farm and community data can raise 

responsiveness, yet utility hinges on sampling frequency, coverage, and standardization 

(Falconer et al., 2025). Connectivity remains the bottleneck. Trained staff and diagnostic 

kits are prerequisites. Evaluate percent change in route length, days-to-inspection, risk 

responsiveness, feasibility, and equity safeguards. 

Policy Implications 

This section converts the prioritization model into actionable governance, financing, and 

operational levers. Although budgets and staff are tight, risk-based scheduling that weights 

severity, vulnerability, and service-impact can improve equity and responsiveness over 

chronological or proximity rules. Integrate hydrogeochemical signals into inspection 

queues and compliance triggers, grounded in SDG-relevant evidence from Vellore's 

groundwater analysis (Dange et al., 2025). Address spatial-scale sensitivities for buffer 

design, route clustering, and cross-jurisdiction coordination; buffer performance is scale 

dependent (Lee et al., 2025). Instruments include risk-adjusted funding formulas, 

community-feedback incentives, data-sharing protocols, and adaptive monitoring cycles. 

Claims of gains, risk responsiveness, and savings require validation. 

Limitations 

Although distributed sites can provide novel data, such claims need standardization and 

direct empirical support (Falconer et al., 2025). Sparse coverage, temporal gaps, 

sensor/reporting errors, and community inputs skew priorities toward accessible or vocal 

areas; staffing, access, backlogs, and response latency cap coverage, and digital reporting 

may exclude. Non-identifiability, typology sensitivity, and deterministic scores warrant 

Bayesian calibration and uncertainty quantification and sensitivity analyses (Kaurila et al., 

2025). Transferability is weak where failure modes or reporting differ, ground-truth is 

scarce, and windows are short, prefer confidence bounds and scenario ranges, and avoid 

generalizing simulated gains across geographies or governance. 

Conclusion 

This paper advances a practical prioritization model unifying typologies of need, severity 

tiers, and real-time community input to convert multi-criteria risk into ranked inspections 

and trigger-based dispatch. Although settings vary, the scheme yields actionable choices 

for scarce teams. Expected gains include coverage, faster response, and lower cost; they 

depend on data quality, assumptions, and validation. Policy entry points: standards, 

procurement, reporting. Metrics: flexibility, savings, coverage, risk responsiveness, 

feasibility. Limitations include data sparsity, environmental variability, and model 

sensitivity. Future pilots and sensitivity analyses should incorporate land-use and climate 
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drivers and supported climate-management simulations (Palmate et al., 2025; Lee et al., 

2025). 
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