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Abstract: This paper presents a taxonomy-driven framework for lifecycle 

vulnerability mapping and predictive maintenance in urban water utilities 

under aging buried assets and budget constraints. Current planning assumes 

homogeneous conditions, limiting risk-aware scheduling and the integration 

of exposure, degradation, and failure-mode evidence. The framework 

integrates criticality indices, rule-based failure typologies, survival and 

hazard models, probabilistic degradation, and Long Short-Term Memory 

(LSTM) sequence models, with uncertainty quantification and feature 

attribution. Data sources include asset registries, network topology, 

telemetry, remote sensing, and socio-hydrological layers, harmonized with 

documented provenance and access controls. Outcomes include simulated 

asset-state trajectories, annual failure probabilities, risk hotspot maps 

transformed into ranked interventions, and schedule optimization under 

crew and budget constraints; model quality is assessed with Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of 

determination (R2) using temporal splits, back casting, and cross-validation 

with 95 percent confidence bounds. Sensitivity analyses examine budget 

limits, model variants, and nonstationary climate and land-use scenarios. 

Because many results are simulation-derived and labels are sparse, effects 

are reported qualitatively and utility-specific magnitudes may vary. The 
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contribution is a unified, auditable workflow that links forecasting, risk, and 

cost into actionable schedules with transparent uncertainty. Practically, the 

framework enables planners and policymakers to prioritize interventions 

that mitigate failure risk while smoothing lifecycle costs under real-world 

constraints. 

 

Keywords: Lifecycle Planning, Vulnerability Mapping, Predictive Maintenance, Asset 

Management, Urban Water Infrastructure, Failure Prevention 

Introduction 

Urban water utilities face aging buried assets, tight budgets, and cascading service and 

health risks from failures. Although stressors vary by land use, hydrology, climate, and 

capacity, planning assumes homogeneity; risk-aware scheduling suffers. We target gaps in 

linking lifecycle theory to maintenance timing, mapping vulnerability points by asset and 

failure mode, and using public degradation data. We propose a taxonomy-driven 

framework integrating criticality and planning heuristics to simulate states, prioritize risk-

aware interventions, and quantify cost disruption trade-offs, with transfer suggested by 

scenario-driven runoff modelling (Subbarayan et al., 2025) and machine-learning 

vulnerability assessment (Mondal et al., 2025) as hypotheses. 

Literature Review 

Table 1. Representative studies by domain, method, data source, and key metric 

Study Domain Method Data source Key metric 

Yin et al., 

2025 

Wastewater 

shock-load 

prediction 

Probabilistic 

encoder-

decoder 

LSTM 

Real WWTP 

time series 

Accuracy 

improvement 

49.7 percent, 

over-limit 

coverage to 

6 h 

Makhlouf et 

al., 2025 

Groundwater 

quality 

monitoring 

Gaussian 

Process 

Regression 

and other 

ML 

246 samples 

with EC, pH, 

site 

conditions 

Correlation 

coefficient 

up to 0.97 
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Karim et al., 

2025 

Urban 

expansion 

exposure 

mapping 

CA Markov 

chain with 

GIS 

Landsat 

imagery 

1998-2023 

Urbanized 

area 53.6 

percent 

2023, 75.8 

percent 2048 

 

This table (1) summarizes exemplar studies and their domains, methods, data sources, and 

key reported metrics. 

This review synthesizes methods for lifecycle vulnerability mapping and predictive 

maintenance; although families target distinct problems, they inform risk triage and 

scheduling. Probabilistic event models improve shock-load prediction (Yin et al., 2025), 

ML monitoring pipelines streamline water-quality assessment (Makhlouf et al., 2025), and 

geospatial urban-expansion analyses map exposure (Karim et al., 2025). Studies should 

report calibration, uncertainty, RMSE and R2 with units, and cost and risk. Asset registers, 

SCADA, forecasts, and remote-sensing enable inference, are patchy, and claims on 

transferability, robustness, and sparsity sensitivity require empirical support. Evidence 

remains thin on exposure-degradation integration and operational shock-load deployments. 

Units anchor interpretation. 

Materials and Methods 

Although datasets vary by utility, the section must specify provenance and attributes for 

asset registries, network topology, material and install year, failures and maintenance, 

hydraulic loading, and socioeconomic or consequence indicators; define quality metrics, 

missingness treatment, harmonization, and georeferencing. Justify models (survival or 

hazard, probabilistic degradation with uncertainty, rule-based failure typologies) against 

physics and data. Report uncertainty probabilistically, validate via cross-validation or back 

casting, run scenarios and sensitivity. Translate risk (likelihood, consequence, cost) into 

priorities, optimize schedules under constraints, simulate strategy variants, quantify risk 

and lifecycle-cost impacts, document assumptions, versioning, integration, access controls, 

equity, privacy, and flag assumptions for external validation. 

Data Sources 

This section details datasets for lifecycle vulnerability mapping. Although registers and 

failure logs differ by licensing and completeness, we record provenance, ownership, 

coverage, and resolution for assets, material/age, sensors, remote-sensing LULC, and 

socio-hydrological layers; outputs carry uncertainty (e.g., change-detection intervals, 

missing-log bias). Georeferencing uses base maps, harmonization via controlled 

vocabularies, and mismatches use spatial joins, temporal alignment. Urban expansion and 

LULC projections from GEE/ML and QGIS-MOLUSCE inform exposure through buffer 
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overlaps (Karim et al., 2025; Gunduz, 2025). Preprocessing documents CRS, filtering, gap-

filling, with calibration and holdouts. Access constraints and records limit generalization; 

machine-readable metadata, versioning, and conservative inference are mandatory. 

Model Design 

 

Figure 1. Proposed modeling workflow overview 

This figure (1) summarizes data inputs, model architectures, and decision outputs linking 

lifecycle vulnerability mapping to predictive maintenance scheduling. 

Although urban water assets fail heterogeneously, we predict failure probability and risk 

to schedule and balance cost-risk trade-offs. Inputs span attributes, telemetry, environment, 

failures, and degradation proxies, missingness addressed via imputation and temporal 

smoothing, with typologies embedded and spatiotemporal lags. Temporal behaviour 

employs survival or point-process models plus ensemble LSTMs for robustness (Hosseini 

et al., 2025), while attention-enhanced LSTM-Transformer hybrids capture dependence 

(Ren et al., 2025). Decision requires uncertainty quantification and feature attribution for 

stakeholder acceptance. Simulations test applicability, risk reduction, cost impact, 

scheduling under budgets. Limitations include scarce labels, covariate shift, and 

computational scaling—claims remain bounded by cited evidence. 

Evaluation Metrics 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

(1) 
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Equation (1) defines RMSE as the square-root average of squared residuals for scale-

sensitive comparison and highlights sensitivity to large errors in evaluation. 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

(2) 

 

Equation (2) defines MAE as the average absolute residual magnitude to provide a scale-

consistent and more outlier-robust error summary than squared-loss metrics. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

(3) 

 

Equation (3) states the coefficient of determination as the variance-explained fraction, 

emphasizing interpretive limits under nonlinearity or heteroskedastic residuals. 

Although RMSE, MAE, and R^2 are standard, their use for asset-failure prediction 

demands explicit justification (Ren et al., 2025). RMSE amplifies large residuals, MAE 

offers outlier-robust errors, and R^2 quantifies variance explained but can mislead under 

nonlinearity or heteroskedasticity (Ren et al., 2025). Rare, high-impact failures require tail-

aware diagnostics and evaluation that preserves event characteristics; temporal splits, 

extreme-focused validation, and uncertainty quantification (Hiraga & Meza, 2025). 

Nonstationary climate and land-use reshape error distributions and baselines, so 

distribution-aware checks and cost-weighted errors aligned to service disruption are needed 

(Liu et al., 2025). Cross-domain transfers must state risk assumptions (Ren et al., 2025). 

Comparative Analysis 

We specify rigorous, objective benchmarking for shared urban water and hydrological 

datasets. Although single-catchment studies inform practice, claims require qualification 

and multi-period tests. Standardize units, lead-time, and metric computation; report Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R2 with temporal 

transferability, sensitivity to nonstationarity, computational cost, data needs, and 

interpretability. Climate-forecast forcings change skill by lead time (Girons Lopez et al., 

2025). Catchment-wise ensemble LSTMs improve accuracy (Hosseini et al., 2025). 

Probabilistic deep learning enhances shock handling and uncertainty quantification (Yin et 

al., 2025). Mandate data splits, cross-validation, lead-time windows, calibration, and 

uncertainty propagation for maintenance scheduling. 

Results 

Outputs included asset-state trajectories, hazard functions, lifecycle costs by schedule, 

and intervention risk reduction, plus optimization efficacy, adaptability, and applicability. 

Although many outputs are simulation-derived, we validated failure timing and rates 
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against operational records via withheld periods and reported cross-validated errors with 

95 percent confidence bounds. Sensitivity covered budget limits, degradation-model 

variants, and climate loadings; parameter elasticities and interval widths guided 

prioritization and robustness. Costs dominate in sparse districts. Remote proxies were 

applied only where super-resolution sharpened detection (Shu et al., 2025), and climate 

attributions were limited to patterns consistent with semiarid lake responses (Jimenez-

Bonilla et al., 2025). 

Risk Reduction 

 

Figure 2. Spatial risk hotspots before after 

This figure (2) contrasts mapped risk concentrations before and after predictive-

maintenance scheduling, illustrating shifts in hotspot intensity and location. 

Operational risk reduction follows when hotspot maps become ranked interventions tied 

to expected failure frequency, spatial concentration, maintenance cost impact, and schedule 

optimization efficacy. Although maps suggest where, decisions require outputs such as 

annual failure probabilities, expected failures, and constrained schedules with intervals. 

Optimized replacement or refurbishment from degradation models and asset data can shift 

risk and reallocate budgets; any percentage change or cost-benefit must be empirically 

shown. Climate exposure or hybrid ML effects need validation (Mondal et al., 2025). Lab 

analogies motivate, not generalize, so field trials are needed (Hassanpour et al., 2025). 

Align with budgets, regulation, procurement. 

Cost Impact 

This section requires converting vulnerability maps into monetary metrics. Although risk 

scores guide priorities, decisions must rest on NPV, avoided outages and emergency repair 

costs, capex smoothing, and risk-weighted losses. Analyses must quantify engineering and 

societal costs, disclose inputs and assumptions, and trace estimates to sources. Uncertainty 

warrants sensitivity tests and probabilistic scenarios; report limitations and robustness 

checks. Compare replacement, condition-based renewal, and deferred repair, and justify 

hydro-mechanical or lab-derived assumptions with simulations and scale-up caveats (Xiao 

et al., 2025; Hassanpour et al., 2025). 
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Schedule Optimization 

This section defines requirements for predictive maintenance scheduling. Although data 

richness varies, link degradation trajectories to constrained scheduling to minimize 

lifecycle risk and cost while maintaining service. Make uncertainty in failure timing, 

consequence severity, and parameters explicit; quantify gains via probabilistic or scenario 

simulations and embed criticality and failure-mode classes in objectives that value 

heterogeneous consequences. Translate vulnerability maps into time-to-failure 

distributions, stress-conditional failure, and crew constraints. Use sensitivity analysis for 

calibration and multi-resolution BIM hydro-mechanical coupling to refine deterioration 

and evidence budget-realistic schedule shifts; evaluate metrics and provide planner outputs 

(Kheshti Azar et al., 2025; Xiao et al., 2025). 

Discussion 

Policy Implications 

 

Figure 3. Policy levers for resilient water systems 

This figure (3) maps governance levers to outcomes and stakeholders 

Although models pinpoint hotspots, capital allocation must apply risk-adjusted rules 

weighting failure likelihood, criticality, lifecycle cost, and service continuity. Adaptive 

budgeting and waivers or incentives expedite priority actions with trade-offs recorded. 

Execution requires coordination across planning, utilities, land-use, supported by data-

sharing protocols and metadata standards. Land-use and climate projections should steer 

anticipatory scheduling to avoid maladaptation, reflecting urban expansion patterns, hybrid 

ML amplification, and CA-Markov GIS demand forecasts (Karim et al., 2025; Mondal et 

al., 2025; Tahir et al., 2025). Equity provisions must limit disproportionate disruption. 

Performance metrics anchor oversight—applicability, risk reduction, cost impact, 

scheduling efficacy, adaptability—tested via scenario-based simulations. 
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Limitations 

This section outlines limitations on lifecycle vulnerability mapping and predictive 

maintenance. Although public registries are incomplete, failure logs biased, monitoring 

coarse, and covariates misaligned with buried-asset scales, inference should be qualified. 

Gains from higher-resolution environmental inputs require evidence from super-resolution 

studies (Shu et al., 2025). Models assume parametric degradation, fixed failure typologies, 

and calibration on few events; these choices risk overfitting and weak generalization. 

Uncertainty quantification and sensitivity analysis are required, not deterministic forecasts. 

External drivers require GCM-based streamflow evidence for hydrological loading (Girons 

Lopez et al., 2025). Transferability hinges on practice, budgets, and governance, 

unvalidated claims are provisional. 

Conclusion 

This paper advances predictive maintenance by unifying degradation models, failure-

mode typologies, and scheduling heuristics into lifecycle vulnerability mapping. Although 

data and model assumptions constrain transferability, the scheme enables resource-

constrained, risk-aware prioritization; cost-effectiveness or schedule gains need audited 

pilots or counterfactual simulations estimating cost per failure avoided and schedule 

adherence. Sensitivity to climate extremes and land-use change demands empirical backing 

and rigorous scenario design (Liu et al., 2025; Hiraga & Meza, 2025). Next steps include 

integration into asset-management workflows and stakeholder engagement to align outputs 

with regulation. Priorities include calibration, extreme-event scenarios, metrics for realized 

risk reduction, and transparent uncertainty communication. 
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